
1k
1/ AD-A038 2146 MASSACHUSETTS INST OF TECH CAMBRID SE ARTIFIC IAL INTE—ETC F/S 912

VIEWING CONTROL STRUCTURES AS PATTERNS OF PASSING MESSAGES.(U)
DCC 76 C HEWITT NOOO1l4—75~C~ O52QUNCLASSIFIED Al N *10 Pt

_ _ I l U
I _ __

_

Ua
a _ _

4
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (I~~.n 0.1. En•.r.d)

R E A D INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
t . REPORT NUMBER 3. REC IPI EHTS CATALOG NUMBER

AIM 410 ~~
jZ. GOVT ACCESSION NO.

4. TITLE (ai d Si.bfltl.)

V iew ing contro l Structures as ,ratterns of P a g

L ~~ess ages~~
. —

urn

PERFORMING ORG. EPOR

______________________ i~~ ii.Tfl AUT Sn III”~~ ~~~~~~~~~~~~~Il~~ ~. A~~Tpi pR(p J

~~~~~~~~r~~~~~~it~~~~
J 

_ _ _ _

P4~~,~ l4-75-C-0~22j  ‘

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Hi~~-/ V~ 7~ !~ —fl~9. PERFORMING ORGANIZATION NAME AND A DDRESS ________________________________~~ ~~~~~~~~& WOR, U 7J’Lflh i~J ~‘(

Ar t i f i c ia l  Intelligence Laboratory
545 Tec hnology Square
Cambr idge , Massachusetts 02 139

II . CONTROLLING OFFICE N A M E  A N D  ADDRESS 4*- 
~~~~~~~ I

Advanced Researc h Projects Agency Dec~~~~ri-1~4O0 W ilson Blvd
Arlington, Virg in ia 22209

14. MONITORING AGENCY NAME 6 ADORESSOI dill., .,, I C~~ H Ith Of IS. SECURITY CLAS S. (of thi. r.porf)

Off ice of Nava l Research UNCLASSIFIED
Information Systems

~~~~~~~~~~ 
IS.. DEC~ ASSI FICAT ION/OOW NGRAD INGArlington, V irg inia 22217 

________________________________ 
SCHEDULE

16. DISTRIBUTION STATEMENT (of thu R.port)

Distr ibut ion of this document is unlimited .

~~~~ STRIB TION STATEMENT (of 1,. .b.fr.cl int•t.d In Stock 20. II dilI .raif Iron, R.po $)

~~ ID ID C
IS. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Conllnu. on ,.v~~.. .l d. If n.c.as~~~ aid id.ntI~~ by block n~~~b.t)

Ar t i f i c ia l Intell i gence Generators
Control Structures Co-Routines
ACTORS Iterat ion
Message- Passing Recursion

20. A BSTRACT (ConHnu. on ,.v.r. . ald• St n.c. ..ay aid Sd.ntS~ . by block ntmi b.?)

-~ The purpose of this paper is to discuss some organizat ional aspects of program

~~j using the actor model of computation . J~rr this paperj ,e presents an approach
... ..J to modell ing in te l l igence in terms of a society of communicating know ledge-
~~~ based problem-solving experts.  In turn each of the experts can be viewed as

a society tha t can be furthe r decomposed in the same~~~Iay ~ unt i l  the p r i m i t i v e
actors of the system are reached ....ji~~.~rE inves t iga t i~~~~the nature of the
communication mechan isms needed for e f f e c t i v e  prob lem-solving by a soc ie ty  of—

DD 
~~~~~~~~ 

1473 EDITION D P I NOV 15 IS OSSOLETE UNCLASSI FIED
S/N 0102-0I4 660 1

SECURITY CLASS IFICATION OP THIS PAGE (*~,..,, b..• JnI.r d)

~~~~~
V

• ~1 . ~
_ .,_•. —- — —

~‘*~ -f-- - . _____



p

2O.~~ ex per ts end the conve nti ons of disco ur se that make this possible.
In this way we hope eventuall y to develop a framework adequate for th~~disc ussion of the centra l issues of problem-so lving i nvolving parallel
versus serial processing and centralization versus decentralization of
control and inform ation storage .

— — —



7
MASSACHUSETTS INSTITUT E OF TECBNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A. I. MEMO 410 DECEMBER 1976

VIEWING CONTROL STRUCT URES

as

PATTERNS of PASSING MESSAGES

Carl Hewitt

Th i s report describes research done at the A rti fic ia l In tell ig ence
Laboratory of the Massachusetts Institut e of Techno l ogy. Support
for the l aboratory ’s ar ti ficia l in telli gence research i s provid ed
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Nava l Research contract NOOOl4-75-C-O6~3
and in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Nava l Research contract N00014-75-C-
0522.

J I I

_ _ _ _ _  -



Control Structure PI~• i

TABLE OF CONTENTS

ABSTRACT 1

II METHODOLOGY 2

11.1 ModelIng in Intelligent Person 2

11.2 Modeling a Society of Experts 2

11.3 The Actor Programming Methodology 3

III THE ACTOR MODEL 4

111.1 Actors 4

111.2 Components of the Actor Model 7

IV ACTOR CONTROL STRUCTURE

IV.1 Introduction to Event Diagrams 9

IV.2 Actor Transmission 11
IV.2.. Messengers 12
IV.2.b Envelopes 13

IV.3 Request and Reply 13

IV.4 Recursion 15
IV.4.. Scripts for a Non-Iterative Factorial 15
IV.4.b An Event Diagram for tictorlal Calling Itself Recursively 16
IV.4.c Snapshot of Storage at Instant when factorial receives [1) 17
IV.4.d Viewing Recursion as a Pattern of Passing Messages 1$
IV.4.. Characterization of Recursion as a Pattern of Passing Messages 19

IV.5 Envelope Level Scripts 19
IV.5.. A More Explicit Script for the Non-Iterative Factorial 20

.IV.S Iteration 22
IV.6.. A Script for an Iterative Implementation of Factorial 22
IV.6.b An Event Diagram for Iterative Factorial 23
IV.6.c A More Explicit Script for Iterative Factorial 24
IV.I.d Meaning of Recursion 1 25

lV.7 Comparison of Recursion and Iteration 26

~

~~~ T~T~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


P.~~ ii C.ntrol Strnotsro

V EFFICIENCY nnd INTELLIGIBILITY 27

V.1 Modular Distribution of Knowledge 27

V.2 Non-haIry Control Structure 27

V.3 GaIning Efficiency thin Psogresslve Ref Iaeaeat 2$

V.4 Generators 31
V.4.. A High-Level ImplementatIon 33
V.4.b An Incremental Implementation 33

VI The LAMBDA CALCULUS of CHURCH 33

VII FUTURE WORK 37

VII.1 ApplIcations 37
VIII.. Incremental Perpetual Denekipmant 3$

VII.2 The Actor P,oblem-So&v4*g Metaphor 39

VIII ACKNO WLEDG EMENT S 40

IX BIBLIOGRAPHY 42

X APPENDIX: Intr oduetlon to PLASMA 4$

LI Sequences and Collections 4$

X.2 Transmitters 4$

Xi Pattern Matching 4$

X.4 Receivers 4$

Xi CondItionals 49

Xi Definitions SO

X.7 Unpack 52

Xi Use of Sequences 33

X.9 Delay 54

X.10 Packagers

I
• -, S — ‘

— — (— — —— ———- — - —. — --— - -

‘
~•. .•~~~~~ — — ~~~~~~— -

Contro l Structure Pig. 1

SECTION I --- ABSTRACT

The purpose of this paper is to discuss some organizational aspects of programs using the actor
model of computation. In this paper we present an approach to modelling intelligence In terms of a
society of commun icatin g knowledge-based problem-solving experts. In turn each of the experts can be
viewed as a society that can be further decomposed in the same way until the primitive actors of the
system are reached. We are investigating the nature of the communtcation mechanisms needed for
effective problem-solving by a society of experts and the conventions of discourse that make this
possible. In this way we hope eventually to develop a framework adequate for the discussion of the
central Issues of problem-solving involving parallel versus serial processing and centralization versus
decentralization of control and Information storage.

This paper demonstrates how actor message passing can be used to understand control structures
as patterns of passing messages in serial processing. This paper Is a pre-requisite for successors which
treat issues of parallelism and communication within the framework established here. The ability to
analyze or synthesize any kind of control structure as a pattern of passing messages among the members
of a society provides an important tool for understanding control structures. Ultimately, we hope to be
able to characterize various control structures in common use by societies in terms of patterns of passing
messages. This paper makes a small step in this direction by showing how to characterize familiar
control structures such as iteration and recursion in these terms.

I

P u s 2 Control Str uotnro

SECTION II --- METHODOLOGY

I I I — Modelin g an Int .lligent Person

Newell (1962) characterized what has become the conventional metaphor for computer problem
solving as follows: “TIie prob leM aelver al,eali he. th,gle periea.1is 7, w.ii.vli~ over a goal Ae~ maid...
aN ear pl orer vaNieri over the couiuryaiie, ?.aving a ads gte costexi end taking It wIth Mn. wherever 1..
goes.” Working within this paradigm, authors of problem solving programs have often relied on
introspection as to methods that they would personally use to accomplish the task. Excellent scientific
work has been done working within this metaphor. Some of the work has taken the form of writing a
program to perform a task which requires a high degree of problem-solving ability in a human. Other
work has attempted to model how an individual human actually performs a simple task at an
information processing level.

Research in any scientific field is carried out within the framework of underlying theories. A
large portion of the research that has been done in the f ield of Artificial Intelligence has taken the
modeling of an artificial human as its implicit goal. An early form of this modelling paradigm was the
goal of constructing devices which would pass the “Turing Test”. By this test a device is intelligent if it
cannot be distinguished from a human by interaction through a teletype. However, the “Turing Test”
view of the goal of artificial intelligence has been abused in recent years. Transcripts that appear to be
interactions with programs have been published that give a very misleading impression of the real
capabilities of the process that produced the transcripts.

11.2 --- Modeling a Society of Experts

Reel pr.eat e.mmaisk.d.n .1 a rooperedve assu re Is 1k essentIal
luslulthe criterion of • society.

Edward 0. Wiles.. In SOCIOBIOLOGY

We are Invest igati ng the problem solving model of a society of experts to supplement the model
of a single very intelligent human. We submit that this change in focus has several beneficial results.
It provides a better basis for naturally introducing parallelism into problem-solving since protocols of
individual people do not seem to exhibit much parallelism. The change in focus helps to make
mechanisms for the communication of knowledge more explicit. Psychologists have found it extremely
difficult to discover the communications that occur in the mind of an indIvidual expert during problem
solving. Also the Justifications for statements becomes more explicit since one expert will often demand
explicit Justifications for the statements of another expert. It helps make the goal structures of
programs more explicit since experts can demand to know why they are being asked to work on a
particular task and how this task fits in with other tasks that are being pursued. Furthermore the
change should foster better specifications for tasks to be achieved so that appropriate experts can be
selected or synthesized.

I

Control Structure P.g. 3

In these ways we hope to develop the communication mechanisms that are necessary to achieve
cooperation between expert modules for various micro-worlds In order to perform larger tasks which
call for the expertise of more than one micro-world. Our work is attempting to build on the analysis
that has been done by philosophers of science in recent years on the structure of the processes used by
scientific societies. In particular the work of Kuhn and Popper and their followers provides us with a
large stock of problem-solving ideas. The long term goal is to construct systems whose behavior
approximates the behavior of scientific societies. That is, the ultimate aim is to build systems whIch
model the way scientists construct, communicate, test, and modify theories.

113 --- The Actor Pro grammin g Methodolo gy

We are developing methods to specify the behavior of actors (objects) in terms that are natural to
the semantics of the causal and incidental relationships1 among the objects. That is, we are attempting
to develop a transparent medium for constructing models in which the control structure emerges ~~~pattern of passing messages among the obiects being modeled.

Towards that end, we are developing a programming methodology consisting of the following
activities:

Deciding on the natural kinds of actors (objects) to have in the system to be constructed.

Deciding for each kind of actor what kind of messages it should receive.

Deciding for each kind of actor what it should do when it receives each kind of message.

Making the above decisions should constitute the design of an implementation. Thus the data
structures and control structures of the implementation should be determined by these decisions instead
of being determined by the limitations of the programming language being used. This is not to say
that the resulting implementation should be unstructured. Rather the structure of the Implementation
should develop naturally from the structure of the system being modeled working within the
conventions of discourse among actors.

Actors are a local model of computation. There is no such thing as “action at a distance” nor is
there any “global state” of all actors in the universe. Actors interact on a purely local way by sending
messages to one another.

I: Causal relationships are determined by physical causation in activating computational events whereas
incidental relationships are determined by the local order of arrival of messages at their destinations.

—~~~~ .

P~~s 4 Control Str uotur.

SECTION III — THE ACTOR MODEL

1111 --- Actors

The basic construct of our computation model is the ACTOR. The BEHAVIOR of each actor Is
DEFINED by the relationships among the events which are caused by the actor.

At a more superficial and imprecise level, each actor may be thought of as having two aspects
which together realize the behavior which it manifests:

the ACTION it should take when it is sent a message

its ACQUAINTANCES which is the finite collection of actors that it directly KNOWS
ABOUT.

We first discuss actors in terms of their physical arrangement because it makes the discussion
more concrete and familiar to most readers. Gradually the emphasis will change to a discussion of the
behaviors realized by actors.

Diagramatically we will represent a situation in Which an actor A knows about an actor B by
drawing a directed arc (which may be labeled for the convenience of the reader) f rom A to B.

/E]\
father

do/[I~—~E~
A directly knows about B as “friend”
B directly knows about A as “support ”
A directly knows about C as In”.4 B directly knows about C as “father”
C directly knows about D as “door”

Diagra m of the acquaintances of actors A, B, C, lad 0

Control Struoture Pig. 5

The notation (acquaintances x)will be used to denote the immediate acquaintances of an actor a.
For example

(acquaintances A) = (C B)
(acquaintances B) = (A C)
(acquaintances C) (0)
(acquaintances 0) ()

Note that the KNOWS A BOUT relationship is asymmetric; i.e. it is possible for an actor A to
know about another actor C without C also knowing about A. Should it happen that A and B know
about each other then we will say that they are MUTUAL ACQUAINTANCES.

The acquaintances of an actor are an abstra ction of its physical representation. Consider for
example a list 1. with first element X and rest Y

[L _ _ _ _ ~ 1
fi~,st

J~ x J

Diagram showin g L directly knows about X as “ first ” and V as “rest”

The actual physica l representation of L cou ld be in terms of a linked list , a vector of storage, or even a
hash table

I

- - - —

Pig. $ Control Struotu r.

LWW.Eb LI~ r VECTOI~ I4AsH Th~ LE
Diagram showing alternative physical realizations of I

Actors are straightforward to implement on conventional machines. We will mention a couple of
ways to do this in order to add concreteness to our discussion. Practical implementations are particularly
easy to construct using list-processing languages and micro-processors. Our implementation of actors in
LISP uses one cons pair for every actor. One component of the pair is a LISP procedure which
provides an entry point into the machine code necessary to implement the behavior of the actor when It
is sent a message. The other component of the pair is an ordered list of the acquaintances of the actor.
A similar representation could be used on a micro-processor (such as the CONS micro-processor of
Knight et. al.). A reference to an actor on a micro-processor would in general require one word of
memory which consisted of two sub-fields. One field would be used as an index Into the micro-code
and the other field would be used to point to a vector of the acquaintances of the actor.

The reader should keep in mind that within the actor model of computation there is no way to
decompose an actor into its parts. An actor is defined by its behaviori not by its physica l
rrpresentatlenl

Control Structure Pig. 7

111.2 --- Component c of ehe Actor Model

The actor message-passing model is being developed as f our tightly related and mutually
sup port ive components:

I: A method for the rigorous specification of behaviors from various perspectives.
An important degree of flexibility available in actor semant ics Involves the ability to
carefully control the articulation of detail to be included in specifications That is .
the constraints on the behavior of a system of actors can be specified in as much or
as little detail as is germane. Too much detail is distracting and impractical. Too
little detail fails to specif y important aspects of the desired behavior. The wrong
kind of detail deflects attention down fruitless paths. Often the specifications need
to be very highly articulated for some crucial aspects of the desired behavior and
less so for other aspects. We are developing a methodology through which the
desired behavior of a system can be specified by axioms which characterize thc
relationships among the events which must constitute the behavior of the system. At
the highest level these axioms are specifications of what is to be done rather than
how. As more detailed constraints of the allowable events are gradually Imposed,
the possible behaviors which will realize these constraints become more restricted
until one is uniquely determined. Conversely, in order to demonstrate that a set of
specifications is satisfied by a particular actor , one examines the behaviors of the
component actors and demonstrates that the connection of these behaviors realizes
the behavior that is required.

2: A system (called PLASMA for PLANNER-like ~ystem Modeled on
Actors) implemented in terms of actor message passing that is convenient f or the
interactive construction of scenarios, scripts, and justificat ions. A SCRIPT is a
PLASMA program which can be used to specif y the action tha~t an actor will take
when it receives a message. In our research we have attempted to investigate
semantic instead of syntactic issues We have designed PLASMA to be a
transparent med~~~ for expressing the underlying semantics of actor
message-passing. For examp le the semantics of the “knows -about ” relationship for
actors dictates that PLASMA must use a particular syntactic rule (lexical binding)
for the referents of identifiers. The semantic model specifies that acquaintances of
an actor must be specified when the actor is created. PLASMA satisfies this
semantic constraint by using the values of the identifers at at the time of creation
for the free identifiers in the script of a newly created actor since these are the only
actors available to be used as acquaintances.

~: A mathematical theory of computation which can represent any kind of
discrete behavior that can be physically r~alired . Our goal is to have a robust
theory whose theorems are not sensitive t~ arb itrary conventions and definitions. A

I

e.g. * Control Struotur.

theory which will be widely applicable as a mathematical tool is needed for
formalizing and investigating properties of procedures. Currently our theory takes
the form of a set of laws that any physically realizable actor system must satisfy
together with a set of axioms that characterize the behavior of a powerful modular
set of physically realizable actors (the primitives of PLASMA) which embody
conventions for discourse among actors.

4: The Event DiaErams presented in this paper are a further development of a
graphical notation used by Richard Steiger in his masters thesis for displaying
relationships among the events of an actor computation. In this paper we use them
to show the causal and knowledge relationships that characterize simple control
structures such as iteration and recursion as patterns of passing messages. Given an
outline of important hypothesized events and causal relations among the events of a
particular computation (i.e. a SCENA R IO of the intended behavior of the system),
event diagrams aid in abstracting scripts of modules that are capable of realizing
this behavior. For example we plan to explore the abstraction of the scripts of
actors for simple procedures for data structures from scenarios of their intended use.
Conversely, they aid in the analysis of an existing system by graphically displaying
the relationships among the events occuring in the system for particular cases of
behavior . Using the displays available on our time-sharing system, we would like to
automate the construction and analysis of event diagrams that have been done by
hand in this paper. We would like to investigate the construction of an “eclectic
magnifyln ~ gj~~~ which provides flexible ways to specify which events and
relationships in the history of a computation are to be be displayed.

This paper introduces and describes the relationship between Event Diagrams and PLASMA for simple
computations that do not involve side-effects. Issues of parallelism, inter-process communication, and
synchronization will be treated in subsequent papers building on the foundation provided by this paper.
For a mathematical treatment of the actor model of computation see (Greif and Hewitt:
SIGACT-SIGPLAN 19’75) and (Greif: dissertation 19Th). Issues of behavioral specifications are treated
In (Greif: dissertation 1975), (Hewitt and Smith: Towards a Programming Apprentice 19Th), (Yonezawa:
Symbolic Evaluation as an Aid to Program Construction).

I

Contr ol Str ucture

SECTION IV ACTOR CON TROL STRU CTURE

IV.l --- Introdu ction to Event Diagrams
From a strictly input-output point of view there is no difference between iterative andnon-iterative implementations of a module. In order to rigorously analyze control structures it isnecessary to have a model of computation that is capable of displaying the Internal structure ofcomputations.

We shall use event diagrams to display the internal structure of computations. Such diagramscan be used to dis play many of the significant internal structural relations in a computation. A legendfor the notation used in these diagrams is given on the next page.

1

- _ _ _ _ _ _

P.g. 10 Control Structur.
Legend for Event Diagra m.

[
A 1 the box represents the a~~r A

~~~~~~~~~ 
* knows about y as ‘helper

[~]~~~f~} the double line represents the EVENT whic h consists
of sendiog the messenger U to the target I

the railroad tracks are used to indicate that the
occurrence of event Li results in the occurren ce of the

event Li has messenger N1 and target Ti whe reas the
event E2 and thus Li must precede L2 in time. The

______ event E2 has messenger 
~~ 

and target 12.

.. - —— ~ . —



Control Structure P.g. 11

IV.2 --- Actor Transmission

Actors make use of one universal communication mechanism called ACTOR TRANSMISSION
which consists of sending one actor (called the MESSENGER of the transmission) to another actor
(called the TARGET of the transmission). Each actor transmission defines an EVENT in which the
MESSENGER arrives at the TARGET. The target and messenger are the immediate
PARTICIPANTS in the event. I.E. if E is an event with messenger actor N and target actor 1 then

(partici pants E) a (N TJ

Actor transmission enables the knowled ge in the local context of the target actor T to be integrated
with the information of the messenger actor U since the acquaintances of both the messenger and target
are available for use when the messenger arrives at the target. Furthermore this constitutes the 

~~~information available at the instant of computation defined by the event!!!

N IN MEss~~, ~ 60MTEXT op

acquaintances
M T acquaintances

Event recording the transm ission of Messenger U to I

I

Page 12 Control Struotsar.

Actor transmission is used to provide the necessary communication between actors to accomplish
the following kinds of actions:

calling a procedure
obtain ing an element from a data stnsctvre
invoking a co-routine
modif ying a data-structure
returning a va lue
synchronization of communicatin g parallel processes

The actor transmission communication mechanism enforces the modularity and protection of actor
systems. It provides the basis for constructing actor systems with explicit modular interfaces such that
user of a module (actor) can only depend of the behavior of the actor. The hardware enforces the
constraint that the user of a module cannot depend on its current physical representation.

IV.2.a -— Messengers

In order to have a useful model of a message-passing system, the problem of Infinite regress must
be explicitly addressed. The actor message passing model provides for primitive actors to deal with
this problem. When a primitive actor receives a request, it is unnecessary for the primitive to send any
further messages in order to properly respond to the request. In particular this means that a primi tive
actor must be able to obtain some of the acquaintances of a messenger which it receives without havi ng
to send any messages. Packagei’s (see appendix) provide the primitive mechanism needed in PLASMA
for transmittin g messengers between actors.

Once an actor, ~~, (serving as messenger) is transmitted to another actor (serving as the target). !~the computation proceeds by following the script of
~

using information f rom ~ For this to be of any
use as a model of communicat ion , it must be that in obeys some fairly standard conventions. These
provide the basis for meaningful discourse between actors. We will adopt the convention that all of the
messengers constructed by the PLASMA system are packagers2 of the following form:

(messenger (agen *: a) (envelope: .) (honker b))

whe re ! is an actor representing the agent responsible for the computation, • is the envelope of the
transmission, and b Is the banker funding the computation. The explanation of bankers and agents Is

- outside th . scope of this paper so we shall say no more about them.

2: Readers who are unfamiliar with the packagers of PLASMA may wish to consult the appendix.

I

~~, ..~~~‘

Control Structure Page 13

IY2.b — Envelopes

In many cases the envelope of a messenger will simply contain a message. A response to a request
Ii either a REPLY envelope with a reply message to the request packaged as

(rep ly th.-rn.ss.&.)

or a COMPLAIN envelope with a complaint message packaged as

(complain: th.-m.esag.)

whi ch ex plains why the request could not be honored.

Often the envelope of a messenger is a REQUEST which In addition to a request message
contains an actor

! to which a reply to the request should be sent. Such an envelope is packaged as
follows:

(reqsost: ths-m.ss.i. (reply- to: c))

The ACTOR c Is closely related to the continuation FUNCTIONS used by Morr is, Wadsworth ,
Reynolds, and Strachey.

An ordinary functional call to a function I with arguments “~i~
..., through irgk is implemented

In PLASMA by passing to I a request envelope with a message consisting of the tuple (.rg1, ..., .rg11Jof
arguments and a continuation actor to which the value of I should be sent.

j v.~ -- Request and Reply

: Perhaps the simplest control structure is the ord inary request and reply pattern of activit y that is
*r!lp$emented in most prog ramming languages as a proced ure call and return . None of the internal
structure of the actor being invoked is shown. Instead the descri ption articulates only the input-output
behavior of the actor.

I

I

P a . 14 Control Structuru

Consider the example of a request being sent to an actor fmtori& to compute its value for the
argument tuple (33 and send the answer to the actor C. The diagram shows the two events consisting of
the abov e REQJJEST (I.e. I sstort~ Is sent a messenger U1 with message (31 and continuation C) and the
REPLY in which C is sent a newly created messenger Mt with message t

F ~~~~~ MT[

~~~~ 

factorial

reply-to

_ j M2~~~~~~~~~~6 J

An Event Diagram for the Comput ation of (fsctoriul 3)

The above event diagram treats fsctori~ as a “black box” with none of the internal events shown.
Notice that the computational process follows the “railroad tracks from the first event to the second
event. We will now proceed to examine the comput ation more closely. This is an application of the
Idea of using an eclectic magnif y Ing glass to articulate the description of a behavior in greater detail.
What Is seen depends on how f.ctoriuI Is implemented as well as the focus of the magnify ing glass.
When we look into the implementation of f.dori.I , we wil l see a number of events that occur between

- 
. the two which are diagrammed above.

Note that the value S which is constructed by the actor lidorlil is ~~ an acquaintance of f.ctsrl~.
Instead It Is the “reply” acquaintance of the messenger U2 which is sent to the contin uation C.

- ——-- — ._.- __  — ——————.-- —

-



Control Structure Page 15

IV.4 — Recursion

IV.4.a — Scri pts for a Non-Iterative Factorial

Suppose we have a non-iterative implementation of factorial. A script written in PLASMA for
such an implementation is given below. Readers who are unfamiliar with the notation can consult the
appendix wh ich provides an informal introductio n to PLASMA.

(factorial • ;fscioria l is defined to be
(a) (.nj ,~r.eeiv. a m.usgo mitts one element whkls will b. called n

(r,d.s n ;:h. nil,, f or n era
(E l  1f is h i

1) ;shen r *terR 1
(ED I)  .ls. if is ia tr aager than l tbeis

(a * (factorial (a - 1))))))) ,~ressns a tins.. F actorI al of a ails... 1

I



Pag. is Control Strssot~w.

IV.4.b — An Event Diagram for factorial Callin g Itself R ecorsIveiy

We are Interested in looking more deeply into the control structure of recursive procedures. To
this end we take the above non-iterative implementation ad factorial as a concrete example to be studied.
When factorial receives the message (3) it is not able to reply immediately since it does not directly know
what (factorial 3$s. Below is an event diagram of the computation that results f rom sending factorial a
messenger U1 with message (3) and continuation C up to the point of the first recursive call In which
factorial Is sent a newly created messenger Mt with message (23 and continuation C’ where C’ Is a newly
created actor that knows about a and C. The script of C’ is such that whenever it is sent a message y. it
sends C the message (3 s y).

r e p l y - t o

M1 
message 1

Factor ia l

- M~ 
messa e 

~ 
)

1
rep ly - to  

2

C ’

reply—to

C

S •_~~~~~~~~ _~~~~ • 
-
- S

. -—-.-——-.--- .- , -— S



Control Str ucture Page 17

IV .4.c —- Snapshot of Stora ge at Instant when factorial receives (
~J

Below we present a sna pshot of the sto rage at the instant fact orial receives the message (13. The
rule for computin g the amount of stora ge being used at the instant of any particula r event is ver ysimple Merely count all the ~ctors that are in the transitive closure of the acquaintances of the
participants Involved in the event. Recall that the participants of an event are the actors immediately
Invo lved (it the target and messenger).

factorial 
~~~~~~~~~~~~~~~~~

reply t o message
N

I c
F

rePl Y
~

to f ~~
i F reply—t o [c” I I ‘~ I

1 1 2 ‘ I

V

, E-.
_ _ _ _ _ _ _ _ _

— -S
.
‘. ,.

~

—- -

.

Pig. 11 Control Struotur .

IV.4.d — Viewin g Recursion as a Pattern of Passin g Messages
1~The above event diagram exhibits the characteristic structure of a recursive computation. This

pattern is familiar to users of ALGOL , LISP 1.6, and PL-I and other programming languages that
make use of a pushdown stack to implement recursion. In such languages the amount of stack used by
the implementation grows monotonicafty until factorial is called with the argument 1 and then
monotonically decreases as the stack is popped.

Below we give an event diagram that displays the pattern of passing messages characteristic of
recursion in the computation of (factorial 3). Note that the computation proceeds from event to event
along the railroad tracks in the diagram.

r e p l y - t o

.1 ~~~~~~~~~~~~~~ .
~

1

r e ply - t o I

Factorial ~~ M~ _ _ _ _

I

_

[2 ~~~~

J] message
~

_ _ _ _

_ _ _ _

~~~~~i I! 
reply - to

mes~~~IM 4 1 ± ~~~~~~[C
_ 1

~~

______ 

~~re ply -to

2 F~~
509ej M 

J~~ 

~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

rep ly - t o

16 ~
meSSO

9eTMi
_ _ _

p .

S

—

Control Structure Pig. 19

IV .4.f --- Characteri zation of Recursion as a Patt. rn of Passing Messages

Thus we see how recursion can be characterized as a pattern of passing messages using event
diagrams . The charact eristic feature is the buiki up of a chain of continuation actors each one of
which knows only about the next and which eventually replies to the next with the answer. Notice that
this characterization of recursion in terms of relations between events is independent of the syntax of
the language for scripts which gives rise to the behavior . For example the same characterization would
hold for a recursive implementation of factor ial in ALGOL. The semantics of ALGOL can be defined
using relations among events in a manner similar to the way in which the semantics of PLASMA is
defined.

The existence of the actors labeled C’ and C” in the above diagram and the events in which they
are the target are difficult to explain in terms of the above PLASMA script for factorial . In order to
explain the origin of these actors and events, we need to explain more of the underlying implementation
of PLASMA.

IV.5 --- Envelope Level Scripts

Thus far in our PLASMA scripts we have examined information communicated in the messages
of envelopes. At this point we would like to introduce the envelope level which allows access to other
Information in the messengers of actor transmissions. Every messenger always contains (among other
things) an actor which serves as the ENVELOPE. In turn every envelope always contains an actor
which serves as the MESSAGE. Additionally REQUEST envelopes contain actors called
CONTINUATIONS to which replies to the messages should be sent.

The reason that it is useful to introduce the envelope level transmitters and receivers into scripts
is that otherwise much of the control structure (pattern of passing messages) has to remain implicit In
something like an evaluator or a compiler. Envelope receivers and transmitters provide the mechanism
for expressing more explicit scripts so that none of the processing or allocation of storage is going on
behind the scenes.

Envelope receivers and transmitters are analogous to ordinary receivers and transmitters in many
respects. They are intended to be used as a notation for writing scripts in which all the com putational
events and actors are explicitly shown. In this way the structure of simple control structures such as
iteration and recursion can be explicitly characterized as patterns of passing messages.

PLASMA uses the syntactic convention of using the number of shafts on the transmitter and
receive arrows to ref lect the level at which the transmission is being referenced; one shaft meaning
ordinary message level, and two shafts meaning envelope level. Thus:

is an (ordinary) message-level-transmitter , and
(
~~ Is a envel~~e-level-transmItter.

Pig. 20 Control Structure

Similarly,

a> is an (ordinary) message-level-receiver , and
as> is an envelope-level-receiver.

Below we use this notation to make the message-passing underlying the implementation of PLASMA
more exp licit.

For exam ple an ordinary message receiver which receives one argument n and replies with the
value (n • 1)written as

(a> (en)
(n + 1))

can be written at the envelo pe level as follows:

(as> (request: [en] (r.ply-to: =c))
(c (ze (repl y: (n + 1))))

IV .5.a — A More Explicit Script for the Non-Iterative Factorial

The correspondence between the event diagram for the non-iterative implementation of factorial
and its script can be made more apparent by using envelope transmitters and receivers to make the
underlyin g implementat ion explicit. The scri pt presented below is intended to explic ate how the
implementation of PLASMA actu ally works.

(factorial a ;factor ial is defined to be
(ii> (request: (en) (reply-s.: .c)) ;r.eeive a request to cent pate the value of factorial for

;sn argument lapl. whose only element Is it and
;s.nd the reply to the actor c

(rules it ;the rules for n are
(a> I ;If il ls 1 then

(c (n (reply: 1))) ;send c a reply envelope wish message 1
(a (1) ;else If it is greeter than 1

(factorial (n ;send factorial a requ.st
(request: ((it - I)) ;with message (n — 1) and

(reply-s.: ;eontlnuasion the following actor
(as> (reply: ey) 1f a reply envelope with message y is received

(c ae (reply: (y a n))))))))))) ;then send c a reply envelope with message (y a i t)

Notice that the above script specifies that before recursively calling factorial (in the case where iwil), a
new actor Is created as the repl y-so: component of the envelope sent to facto ri.’. This new actor is
created with ACQUAINTANCES it and c and has the fol lowin g SCRIPT:

Control Structure Pig. 21

(as (reply: cy)
(c (e. (reply: (y * n))))

Operationally, the script says 1.r each reply y that is received, msltiply is by it end send she resaldag’
pr.dues as a reply so c .

Pag• 22 Control Structure

IV.6 --- Iter ation

It is well known that another, more efficient implementation of factorial uses iterative control
structure. Event diagrams will be used as a tool to illustrate the behavior of this more efficient
implementation of factor ial. One idea for an iterative implementation is to gradually build up the
product while counting down the argument --doing one multiply for each iteration. So we define an
actor called ioop which should be sent both the current accumulation (which is Initially 1) and the current
count (which is initially the input it) on each iteration. The obviou s way to do this is to repeatedly send
loop a sequence of the form [accumulation count).

IV.6.a --- A Script for an Iterative Implem entat ion of’ Factor ial

(factor ial ;factorlel I. defined to be
(a> (en] ;reeelve one argument and call is n

((1 i i] e> ;send a 2-tup le with elements 1 and it so
(loop a ;a newly crested actor named loop which behaves as follows

(a> [maccumulation ecount) ~receive a 2-lu pie as the current accumulated product and count
(rules count

~the rules for the count are
(a> 1 ;lf it is I then

accumulation) ren&rn the accu mule dot.
(a> () 1) ;else If Li la greeter than 1

(loop ;send loop
(accumulation * count) ;the accumulation times the count
(count - 1))))))))) rend the count minus one

Notice that the argument it is !!2~ an acquaintance of the actor ioop in the iterative
implementation of factorial. The rule for calculating the acquaintances from the script of an actor
defined in PLASMA is very simple the acquaintances of a newly created actor are the actors named by
the free identifiers in the script at the time the actor is created. Instead of being an acquaintance, the
actor n is to loop as the second element of the two tuple (1 it].

S..

Control Structure Pi1• 23

IV.6.b — An Event Diagram for Iterative Factorial

The script given above will exhibit the behavior diagramed below when factorial is sent the
message (3). This Is an illustration of iteration as a pattern of passing messages. Note the repeated use
of the actor C as a continuation in the envelopes used in the Iterative implementation of factorial.

rep ly - to

~ F a c t o r i a I~~~ ~
_ _ _ _

C 3 1 J
~~ reply- to

j M] f
_
~~~

09e
4(

__

1 1  
-

~

r e p l y  - to

Loop 

~~~~~~~ 2

4. r e p ly - t o

(T M l
~~~~~~~[~ 6 1] 1

L6 j4
messa9eJ M5~ ~ c



Pig. 24 Control Structure
1V 6.c --- A More Explicit Script for Iterative Factorial

Notice that the above implementation of factorial definitely uses iterative (finite-state) controlstructure in the sense that it does not need any more memory than that needed for the values of countand accumulation. We now incor porate envelo pe transmitters and receivers to make the script of theiterative implementation of factorial more explicit. In this way the corres pondence between the event
diagram for the iterative implementation and its script becomes more apparent.

(factorial t. ;facsovial is defined to be
(as> (request: [en] ;reeeive a request with argument tuple (i t]

(reply-to: =c)) ;end continuation c
((request: (1 it] (repl y-to: c)) em> ;seni a request with argument euple (1 ii] and

costinuatlon c so the following newly created actor(loop a 
~nam,d loop

(as> (request: [ accumulatioj, =count] (reply-to: d)) ;such that If a request Is received with
;message containing the accumulation and count

;and continuation d
(rules count ;checks the count

(a> 1 ;to see if it u i(d <~~~ (reply: accumulation))) ;if s• Is sends the accumulation as a reply to d
(a> ~ I) ;else if it is greater than I then(loop (~~~ ;send loop a request with

(request: [(accumulation * count) (count - 1)] ;the appropriate message
(reply-to: d)))))))))) ;and the continuation d

The reason that this is iterative is that loopalways passes along the same continuation actor that itreceives wit h the message. The only continuation it needs, and therefore the only one that it holds onto,is the one contained in the original envelope that was sent to factorial. The loop sends its answer to thatcontinuation directly when it is done. Thus no rttra storage is needed going around the ioop.Furthermore, in this implementation of iteration there are no side effects which change the behavior ofany actor . If the user wants , she can keep a complete history of all the events in her computation andbe confident that no Information has been lost. Actor semantics account for the iterative behavior ofthe above implementation of factorial without having to appeal to external implicit mechanism such asan interpreter or any kind of external storage mechanism such as activation records. All the behaviorof the system is accounted tot by the behavior of actors when they are sent messages. Furthermore altof the stor a ge is accounted for by the actors shown in the event diagrams. Event diagrams show howPLASMA is actually imp lemente d using actors. The actor model provides a complete self -containedrigorous theory of iteration as a pattern of passing messages. It provides an explanation for thesemantics behind the optimization rule used by many compilers that all tail recursive self -referentialdefinitions can be compiled using special iteration primitives such as while loops, do 1oops. etc.



Control Structure Pig. 25
IV .6.d — Meaning of NRecurs ion

The term RECURSIVE has come to have at least three different meanings in computer science

I: Effectively computable as in recursive function theory~
2: Self-referential as in factor ial can be defined recursively in terms of Itself

3: Non-iterative as in recursive functions use up more push -down stack when they
call each other whereas iterative loops do not”.

Bot h the iterative and non-it erative defin itions for factorial which we have presented are
self-referential. However , only the non-iterativ e implementation is “ recursive ” in the third sense of the
word.

Using factorial as a simple example, we have shown how the actor message passing model can be
used to give additional precision to fund amental concepts in computer science.

I

— ---------

S.  .



Pig. 2$ Control Stru otur .

IV.7 --- Comparleon of Recur sion and Iteration

Below we present abstracted versions of the event diagrams for the iterative and non-iterative
implementations of factor ial when called with 3 as an argument. In the diagrams below the message Is
shown inside the messenger in order to more strongly bring out the pattern of message passing.

RECURSION

~
- -~ j r e p ly - t o

I L 3 J

Factorial ~~I 4 [ 2_1~~~~
r e P IY - t

~

Ft1

[i~~~~ ~~c ’~~

[21 
_

• ~4~~4
ITERATION

tFactor .~9j] ( 
-
~ii4 { ] j  re p ly - t o

~ ~~ 1 ~ 
r e p l y - t o

~~I 1  - i i

L o o p  
~ 

[
~ 

2 ]  ~~~~~~~~~~ ,

- 

~~~ f~6 1]  
~~

r e p ly - t o

[6 J ~ _

,. ,_. - - -
.
‘.

Control Stru cture Pig. 27

SECTION V --- EF FICI uNCY and INTE LLI GIB ILIT Y

Y.l — Modular Distribution of Knowledge

Since the defining characteristic of actors is that they send and receive messages, they are
relatively unbiased with respect to assumptions about control structure and the distinction between data
and operators. The neutrality on the issue of division of knowledge between data structure and
operators can be seen in the various ways in which one can distribute information in an actor system.
How. one might choose to distribute it depends on one’s purposes and the various uses to which the
knowledge can be put . Often it is desirable to represent knowledge redundantly with different uses of
the same knowledge appearing in several guises in several different places. The point is that the actors
al low distribution of knowled ge in any way that is useful.

Early Artificial Intelligence programs were mainly organized as multi-pass .ieuristic programs
consisting of a pass of information gathering, a pass of constraint analysis, and a pass of hypothesis
formation. It Is now generally recognized that multi-pass organizations of this kind are inflexible
because it is often necessary for information to flow across these boundaries in both directions in a
dialo gue at all stages of the processing.

V.2 --- Non-hairy Cont rol Structure

One of the most important results that has emerged from the development of actor semantics has
been the further development of techniques to semantically analyze or synthesize control structures as a
pattern s of passin g messages. As a result of this work , we have tound that w e can do without the
paraph ernalia of “hairy control structur? (such as possibility lists, non-local gotos, and assignments
of values to the int ernal variables of other procedures in CONNIVER). None of the accouterments of
“hairy control structure” seem to be necessary for communication among the plans of a high-level
goal-oriented formalism. In particular “hairy control structure” is not needed to deal effectively and
efficiently with anomalies and complaints encountered in the course of attempting to mechanize
problem solving in such a formalism. The conventions of ordinary message-passing seem to provide a
better structured, more Intuitive, foundation for constructing the communication systems needed for
expert problem-solving modules to cooperate effectively.

We have discove red a syntactic transfor mation by which it is possible to convert a program which
uses hairy control structure into an equivalent program that uses ordinary message passing. The f irst
step of the transformation is to convert each ordinary message receiver a> into the form aa> and each
ordinary message transmitter a> into the form ua> using the techniques used in the examples above.
The next step then simply to convert each envelope level receiver aa into e and each each envelope
level transmitter aa> into a . The result is a program which make no use of hairy control structure.

Pig. 2$ Control Struot ur.

However, it is ~~ recommended that the above method be used to convert programs that use
hair y control structure. The best way to achieve an efficient modular imp lementation of a problem
solver is to reason directly in terms of the behavior required to solve the problem. It is highly
undesirable to take a program that is difficult to understand because of the use of hairy control
structure and “improve” it by eliminating the hairy control structure by a local syntactic transformation
such as the one discussed above. In general such local transformations make badly structured
programs worse instead of better.

We will present two examples of problems where hairy control structure was originally used to
implement a difficult problem. As the problem to be solved has become better understood, more
intellig ible solutions which do not involve hairy control structure have been developed.

v.~ --- Gainin g Efficiency thru Pro gressive Refinement

Efficient implementations of systems are usuall y most easily arrived at by beginning with a
high-level goal-oriented plan and then progressively refining using specific domain-dependent
knowled ge. For example a simple recursive implementation for computing bas.S1P0~SM is given below:

(int.g.r-.xpon.ntiation =

(a) (bas. =.xpon.nt]
(v’ul.s .xponent

(a> 0
1)

(eta.
(baa. * (int.g.r—.xpon.ntiahon baa. (aapon.nt — 1)))))))

In the above example we have made use of an expression of the form

(eta. ‘~ .z)
as a convenient mnemonic abbreviation for

(a> ?

making use of the fact that the pattern V will match anything.

The above plan is too inefficient to use to caku late large exponents. However , we do not intend
to use it for this purpose! Instead of execut ing the plan, we propose to refine it to make it more
efficient. These refinements have been accomplished by using a great deal of mathematical and
problem solving knowledge.

The ef f iciency of the exponentiation routine can be improved by transforming it into an iterative
form using the fact that integer multiplication is associative:

Control Structure Pig. 29

(int.g.r-upon.ntistion a
(a> (=bas. a.xpon.nt]

([.xpon.nt 1 J a>
(t lll—uponsn t- !sro a

(a> [a =.ccumulationj
(tulsa .

(a> 0
accumulation)

(.1..
(till-.xpon.nt-z.ro

(5 - 1)
(accumulation * baas)))))))))

However , the above procedure is still not very efficient.

Notice that if exponent is an even Integer then

b.s.u1P0~l5flt a (bass * baa.)(”P°’~”t / 2)

The above arithmetical fact can be used as the bas is for makin g a faster exponentiation routine:

(I ast—.xpon.nti.tion a
(a> (aba.. zsxpon.nt]

([bass .xpon.nt 1] a>
(till—.xpoiwnt—z.ro I

(I) (ab a5 =accumulation]
(rules.

(‘> 0
accumulation)

(a) (even)
(tilI—.xpon.nt-z.ro

(b * b)
(.1 2)
accumulation))

(eta.
(till—.xpon.nt—z.ro

b
(s - i)
(b * .ccumulatlon)))))))))

This last refinement is probably fast enough for most practical purposes. However , John Reynold s has
pointed out that the above program is still inefficient in two ways:

Pig. 30 Control Struotur.

After it Is determined that the exponent is odd, when the ioop is continued it is
unnecessary to test that (aspon.nt - 1)is even.

After It is determined that the exponent Is non-zero but even, w hen the loop is continued
it is unnecessary to test that (.zponont / 2)is non-zero.

Reynolds showed how these inefficiencies could be removed by the use of assignment statements and
gotos.

The double testing is easily eliminated in PLASMA by simply defining two auxiliary actors
which handle positive and even exponents as special cases. This example demonstrates how the
underlying strategies of optimiz~tiom can be captured by reasoning in terms of message-passing.

(f.st.r-.xpon.nti.tion a
(a> (aba.. a.xponsntj

(I.,
(positivs-.xpon.nt a
(a) [ab =~~ aiccumulation]

(rules.
(1) (even)

(positiv.-.npon.nt
(bsb)
(./2)
ascumulation~

(eta.
(.v.n-.xpon.nt

b
(.-1)
(b * accumulation))))))

(svon-szpon.nt a
(1> [.b a~ aiccumulition]

(rulss s
(1) 0

accumulation)
(eta.

(posiliv.-uponont
(b * b)
(./2)
accumulation)))))

shea
(ru.l.s .xpon.nt

(a > O
1)

(eta.
(posltivs-.xpon.nt bass .xponsnt 1))))))

~,. . • ~•% - --

Control Structure Pig. 31

The point of this exam ple is that viewing control structure as a pattern of passing messages can
be used to motivate optimizations that improve efficiency. A good programming methodology involves
writing high-level goal-oriented plans to specify a task followed by progressively refining these plans to
obtain efficient Implementations. To support a programming methodology based on progressive
refinement, it is necessary to have a unified coherent formalism which can encompass the necessary
range of plans. The formalism needs to be sufficiently powerful to represent any potential optimization
so that the complexity and efficiency of the optimization can be calculated.

V.4 --- Generators

In knowledge based systems, it is unreasonable to store all the implications of the knowledge
available at a given time. Explicitly storing the answers to all possible questions instead of
incrementally generating them as they are needed is not only extremely inefficient since most of them
may never be needed, but may in fact be impossible. For example expanding out all the possible games
of chess befor e making the first move is clearly infeasible. The therefore it must be possible to
incrementally generate implications as needed in order to answer questions.

In order to deal with this problem Newell, Shaw, Simon introduced a form of generators into
their Information Processing Language. Since that time, the concept has undergone considerable
further development. In terms of actors the idea is to construct a sequence a which behaves like a
sequence of the possib le answers to som e question. The trick is that a does not physically contain all the
answers but rather generates them incrementally as needed. To make this discussion mot e concrete we
present a simple problem that illustrates how generators can be conveniently implemented in PLASMA.

We will assume that we have some actors called trees such that each tree is either of the form
(terminal: T)where I Is the terminal symbol, or of the form (non-germina l: I R)where I and R are left and
right sub-trees.

For example the tree
2

(1,0*-i .rmbsai :
1 2 L~ 1(no*-lernsIr. aI : (germinal: A) (ierminal: B))

(terminal: C))

A f B

has the followin g fringe (sequence of terminals in left to right order) (A B C)

‘4.

Peg. 32 Control Structure

as does the f oflowin g tree:

(termina l: A)
(non—terminal: (terminal: B) (terminal: C)))

B

whereas the fol lowing tree

(non -termInal:
(ter minal: C)
(non-terminal: (terminal: A) (terminal: B)))

has (C A B~~s its fringe. A

The problem is to define the actor ring, so that for any tree
~,

(fringi T)behaves like a sequence
of the terminal elements of ! There are two important properties that characterize the behavior of’
fri ng.. First, ring, of a terminal node must behave like a sequence with one element

((r ing. (terminal: 1)) 1!.)

The symbol is used to denote behavioral equivalence of actors. Second , ring, of a non-terminal node
must behave like the sequence produced by concatenating the fringe of the left sub -node and the fr inge
of the right subnode

firing. (non-terminal: I R)) [t(h’i.ig. I.) I(frirg. R)J

The above specification makes use of the unpack operator I of PLASMA which is explained in the
appendix.

— —
~~- ‘.= - - - --- -— -—-— —

S

Control Struct ure Pag. 33

V.4.a -— A High-Level Implementation

From the above behavioral specifications we can immediately derive the following
Implementation of fring.:

firing , a ;ehe behavior of fring. is defined so be
(a) (.th.—tr..] ;whenever is r~’reives a tree

(nil.. th -t ri~ ;the ru les for she tree are
(a> (terminal: aT) ,~if is a terminal I

(T)) ;thea she fr ing e is a sequenre whose only element Is I
(a> (non-terminal: aL aR) ;else she tree must be a non-ierm.nal

(l(Oring. 1) !(lring. R)J)))) ;an d the fringe of she tree Is
;the fringe of its left j ab- tree ronratenated wit?,

;the fringe of its ri g ht sub-tree

Unfortunatt ly, the above implementation is not incremental because it immediately looks at all the
nodes of the tree and thus is exponentially inefficient. The above definition of fring. is still very much
a specification of what Icing, is supposed to do as opposed to a detailed specification of).~~ to
efficiently accomplish the task. This lack of concern with the details of implementation is the chief
advantage (and at the same time the chief disadvantage) of high-level implementations.

V.4.b — An Incremental Implementat ion

Incremental generation amounts to adopting a wait and see approach as to whether the rest of
the elements will be needed. The above implementation of fring. can be refined to be incremental by
use of the delay operator. Readers who are not familiar with the delay operator of PLASMA should
consult the appendix.

firing, a ;the behavior of fringe is defined to be
(a) (.th.—troi] ;whenever it receives a tree
(nil.. th.-tr.. ;the rules for the tree are

(a) (terminal: aT) ;if is a terminal I
(I]) ;g heiu the fringe Is a sequenre whose only element I, I

(a) (non-terminal: at. aR) ;else the tree must he a non-sernsin.l
(l(delay (Icing. 1)) !(del ., ((ring. R))J)))) ;and the fringe of the c-e. La

ihe fringe of its left sub-tree ronratenated avith
;the fringe of Its right sub-tree

The wa it and se? approach is not always the most efficien t implementation for every problem.
In particula r often there is a space-time trade-of f in the u~e of the delay operator In many case s it is
more efficient to sim ply com pute an expression ~ immediately than to wait by the use of (delay L)si nce
the latter can cause the retention of extra unnecessary stora ge. For examp le consider the followin g
def inition :

S. - -
- 5 —

Pig. 34 Control Structure

(I a
(a) (ax af t]

(rut.. a
(I) ((3)

0)
(else

h~~)

Notice that the expression (I 2 HUGE)immediately evaluates to 0 whereas tue expression
(d.lsy (I 2 HUGE))is an arbitrarily large amount of storage which will eventually evaluate to 0. The
reader might consider how the efficiency of the implementation of the delay operator can be improved
using part ial evaluation.

An additional complexity is that PLASMA uses incremental sequences to implement pattern
directed retrieval from a data base. This data base must have side -effects because it is used to
implement communicating parallel processes (Greif and Hewitt 1975]. In this application the “do it now”
and •wau and see” implementations can result in different sequences of values! In order to make
Interprocess communication work properly, careful control must be maintained over when delays are
introduced into PLASMA scripts. This issue arises in the implementation of shared resources whos
Integrity must be protected as they are used by communicating parallel processes. For this reason
PLASMA has been not been designed to use the delay rule for evaluation as the default evaluation
mechanism as has been proposed for lambda cakulus languages by Church, Cadiou, Vuillemin,
Wadsworth, Henderson and Morris, and Friedman and Wise. Carried to its logica l extreme the
ultimate form of the uniform delay rule is to never compute the value of any expression unless the
value is needed for output to the external environment!

Control Structure Pa g. 35

SECTION VI --- The LAMBDA CALCU LUS of_CHURCH

As we have explicitly acknowledged in our previous papers, the development of PLASMA and
the actor model of computation has been strongly influenced by the lambda calculus and by the work of
numerous researchers who have studied it. The lambda calculus of Church is a suitable formalism for
studying the behavior of effectively computable functions.

In our research we have attempted to constructively build on this previous work by developing a
p!oblem solving formalism and semantic model for actors such as cells , serializers, and funnels which do
not behave like mathematical functions. In the sections below we investigate the different ways that
previous researchers have used the lambda calculus as a formalism for stud ying the semantics of
procedures.

The actor model of computation is based on incidental and causal relations among events where
each event is defined by the act of sending one actor to another. Thus it is incorrect to speak of an
“actors interpreter ” because a semantic model does not specify a language w hich can be executed. The
relationship between actors and PLASMA is analogous to the relationship between mathematical
functions and the lambda calculus. Although there is a well developed mathematica l theory of
functions as sets of ordered pairs, there is no such thing as a functtons interpreter”. The lambda
calculus is just one of many possible languages which can be used to define the behavior of
mathematical functions. Similarly, PLASMA is Just one of many possible languages that can be used to
define the behavior of actors .

In s~rne useless sense all programming languages are equivalent. It is possible to simulate the
behavior of any programming language using any other programming language in common use.
Naively it might be thought that ALGOL is “more powerfu l than FORTRAN because ALGOL has
recursion and FORTRAN doesn’t. However , there is a programming style ir~ FORTRAN which
enables recursive programs to be written n FORTRAN corresponding very closely to the way in which
the programs would be written in ALGOL. The sirnu’ation involves allocating a large array to hold
the tem porary values needed in recursion. Similarly it is possible to simula ’° the behavior of PLASMA
using a lambda cakulus interpreter. The table below gives a simulation method for important
behaviors of actors:

BEHAVIOR PLASMA LAMBDA CALCULUS
PRIMITIVE SIMULATION TECHNIQUE

mutu•I-r.f.r.nc. lab.Is V op.rator
sid,— f1.cts call “g~obaI stat. of m.mory
synchronization s.rializ.r global oraci.”
parallelism I unn.l “global stat. of program count.rs

All of the above simulation techni ques work by systematicall y adding extra arguments to lambda

.
5-.

- -

Peg. 36 Control Struot ure

expressions. To simulate cells (Scott -Strachey] an extra argument is added to every lambda expression
w hich is to be bound to a lambda expression which contains the current contents” of all the cells on all
the machines of the system. An assignment of new contents to a cell is simulated by constructing a new
lambda expression which simulates the “next global state of all the cells on the machines. Similarly to
simulate synchronization an extra argument is added to every lambda expression which is to be bound
to a lambda expression which simulates the “next ” instruction to be executed on one of the machines
executing in parallel. Thus the lambda calculus can be used to simulate the behavior of an actor system
running on a network of machines executing in parallel. The lambda cakulus simulation approach
attempts to model all behavior by reduction to lambda abstraction and application. This raises an
Important question:

For what purposes is lambda calculus simulation a useful model of computation?

The answer to this question is currently under investigation by many researchers. We suspect that it
wilt be several more years before researchers have reached a consensus of opinion on the question.
However, we can make a few preliminary remarks that bear on what the ultimate answer might be.

Simulation using lambda expressions does not correspond very closely to the mechanisms that
are actually used to implement com municating parallel processes on a netwo rk of mach ines
executing in parallel. Networks of machines will soon become very common because of the rapidly
decreasing cost of processors and rapid development of technologies to inexpensively provide
high-band width connections between machines.

PLASMA attempts to provide modular primitives which are intended to be used to implement
abstractions that manifest useful problem solving behaviors such as communicating parallel processes.
Within the actor model of computation, the behaviors of primitives such as cells, serializers, and funnels
are axiomatized using incidental and causal relations among events. The actor model is intended to
serve as the semantic foundation for a Programming Apprentice that supports an evolutionary
behavioral programming methodology. In order for a Programming Apprentice to communicate
effectively with the programmers building a system, it needs a semantic model which closely corresponds
to the way in which programmers think about their computations. The actor message-passing model
corresponds closely to the mechanisms that are actually used to implement communicating parallel
processes on networks of machines.

Control Structure P.g. 37

SECTION VI I --- FUTUR E WORK

V ii i —- Applic ations

The PLASMA system described in this paper is currently being implemented at the MIT
Artificial Intelligence Laboratory. In the spring of 1975. PLASMA was defined meta -circularly in terms
of itself and then translated by hand into LISP using making use of LISP macros written by Russ
Atkinson that make LISP resemble a subset of PLASMA. In the fall semester of 1975 the translation
was completed and brought into an efficient running state by Howie Shrobe. However , more work is
needed before it will be usable for writing large systems. This implementation (which has modularity
and good human engineering as its chief design goals] is still under development. It is based on the
actor transmission communication mechanism using primitive actors coded in LISP The development
of the actor metaphor will continue in the next year to gain some experience in using it for the
following kinds of applications:

to implement a distributed symbolic evaluator for a Programming Apprentice (Hewitt
and Smith 1975, RIch and Shrobe 1975. Yonezawa 1975]

to implement other procedural knowledge-based systems such as a stereotype- based visual
perception system (McLennan 1975]

as a formalism for defining message passing systems to try out idea s for the modular
distribution of knowledge for a societ y of communicating ex perts

to experiment with various scheduling and synchronization policies using sei’iahzers
(Atkinson and Hewitt 1976]

as a basis for a flexible actor-based animation language (Kahn 1976]

S.

Peg. 3$ Control Rtruotur.

VII.l.a --- Jnc remental Perpetual Development

The develo pment of any large system (viewed as a society) having a long useful life must be
viewed as an incremental and evolutionary process. Development begins with specifications, plans,
domain dependent knowledge, and scenarios for a large task . Attempts to use this information to create
an implementation have the effect of causing revisions: additions, deletions, modifkattons,
specializations, generalizations, etc. At all times in the perpetual development of the system the
programmers are confronted with

I: A progression of more refined plans (programs. implementations. etc.]
which partiall y accompl ish some of the tasks specified.

2: Partial specifications (contracts , intentions, constra int s. etc.] for some of
the subtas is which are to be accomplished.

S: Partial justif ications [proofs, demonstrations, analysis of dependencies]
regardin g how some of the p lans satisf y some of their specifications.

4: Partial descriptions of some of the background know ledge
(mathemat ical facts , physical laws , questions of inter act ive users , government
regulat ions , etc.] of the envi ronment in which the system will operate.

5: A collect ion of sce narios (at various articu lations of deta il]
demonstrat ing how the system Is supposed to work in concrete instances.

The success of an evolut ionary behavioral modelin g methodolog y is high ly dependent on the
deve lopment of competen t Programming Apprentices [Hewitt and Smith 1975, R ich and Shrobe
1976, Yonezawa 1976] that help keep the above potentiall y disparate descriptions of a sys tem
coherently organized. The primary benefit of maintaining this coherence is ~~ to prove once and for
all that the implementation Is CORRECT in any absolute sense. Changes in the environment extern al
to the system will require that the system must either adapt its behavior to the changed circumstances or
be supplanted . Rather the chief benefit of demonstrating the coherence of multiple descriptions of
a system is to make the dependenc ies among the parts exp licit so that the system can be readily
adapted to the perpetually changing exte rnal environment. Al ready for many systems considerab ly
more money is spent on modification and enhancement than on initial design and imp lementation .

Control Structure Pig. 39

V~~~ --- Tb. Actor ~ rob1em-Solvin~ Meta phor

The actor metaprior h ’r pr~b)em solving is a large human scientific society e a h actor is a
scientist Each has her ow ;s du t ies . speci a3t le~, and contracts Control is decentral ized among the actors
Communicar’on is highly csy lire d a r r 4 foi mal using messiges that are sent to indiv idual actors

Problem solving proceeds b~ ‘he attem pts of ex perts to guess . or to conject ure. a plan for a
solution fol lowed by a’tempts to cr ittc iz’ the usually somewhat faulty initial plan Plans for action are
pu’ forward ~or trial, to be eliminated or modified if not germane to the problem at hanc Tentative
acceptance of a proposed plan mus t b~ c rwnbineä with an ability to revise it if it is demonstrated to be
infeas ible We make it our task ~ construct expert proble ’n-s&ving modules to live in a world
characteri zed by incom p lete knowledge; to adj ust themselves to it as well as they can , to take advanta ge
of the opportunities t hey can find in it , ar~1 to 5OiV~ the problem, if possible (they need nor assume that
it is), with the help of the kncwled~e a~’ai ahIe If this is the task , then there is no more rational
procedure than the method of plannj~g~~refining,_ and~~~~icizin ’ of proposing new plans,
progressively ref ir’sng these plans to incorporate knowledge relevant to their execution, critic izing these
re~inements to expose their deficiencies, and of tentatively following them if they survive.

Newcll (1962) points out two potential difficulties which must be dealt with by systems which
adop t the actor prob lem solving methodology First , the messages (carried by the messengers) must
sometimes contain strategies, not just facts. They must be in the form of partial information that can
De combined wi’h other information available to the target actor A good formal language must be
developed for this kind of communication The second potential difficulty is that a society operating in
‘his fashion must not become a bureaucracy bogged down In sending messages back and forth without
makin g any prog ress We propos e to rely on the critical nature of actors which are delegated sub rask s
to help con trol aimless thrashing

We would like to emphas ze t hat in the current state of the art only a small part of this
metaphor can be realized in practice. At this point in time the metaphor serves mainly to provide
suggestion s of directions in which to work Perhaps in the very tar fut~ire it will be possible to
construct computer systems which have a si g nificant fraction of the expertise and communication ability
of a small scientific subfield

I

P.g. 40 Control Structu re

SECTION VIII ACKNOWLE DGEMEN TS

The research reported in this paper was sponsored by the MIT Artific ia l Intel ligence and
Laboratory and Project MAC under the sponsorship of the Office of Naval Research

Writ ing this paper would not have been possible without the generous help and encouragement
of Maril yn McLennan. Many people have given us valu~able feedback and criticism on the idea s in
t his paper The detailed comments and crit icisms c.f Robert Baron , Candy Bul iv ’ ink le , Henry
Lieberman , Marilyn McLennan , Ron Pankiewi c7 , Chuck Rich , Bruce Schatz , and Brian Smith have
vast ly improved the presentation of th e idea s in this paper We would like to thank Hal Aoe~son, Russ
Atkinson , Roger Banks , Edward Fredkin , Danny Hil lis , Ben Kuipe rs , Chuck Reiger , Steve Saunders ,
Howle Shrobe, Brian Smith , Peter Sio lov its , Jim Stansf ield, Richard Steiger, Guy Steele, Rich ard
Waters , and Aki Yunezawa for their com ments and suggestio ns

Our even t d iag rams and semanti c definitions demonstrating that iteration and co-routine control
structures can be efficie ntl y implemented in PLASMA ivithout using hairy control structur? have been
the s~rh~ect of numerous lectures which we have given at M IT and elsewhere in the last yea r The
event diagram for the recursive implementation of factorial appearing in tl is paper is a simplified
version of ttv~ one presented by Richard Steiget tn his master s thesis They were presented in a tutorial
lecture at t he International Joint Conference on Artificial Intelligence held at Tiblisi in September 197!J.
The method described in this paper for doing iteration (published in the paper by Greif and Hewitt in
the Conference Record of the January l97~ ACM Symposium on Principles of Programming
Languages) has influenced Suisman and Steele to make the same method work for SCHEME.

The progress we have made on actors would have been completely impossible without the
contributions and question3 of numerous MIT students Ben Kuipers, Howie Shrobe, Keith Nishihara,
Brian Smith, Ak i Yo~iezawa , Richard Steiger, and Peter Bishop, and Irene Greif have done much of
the work in makin g actors intelligible and releva nt to the problems of constructing knowledge-based
syst ems.

Conversations with Alan Kay. John McCarthy, Alan Newell, and Seymour Papert were useful in
getting us started on this line of research. Newell’s thought provoking paper entitled Some Problems
of Basic Organization in Problem-Solving Programs has inspired many of the ideas in this paper.
Our research has concentrated on the development of a rigorous model of computation based on
relationships among computational events. The development of this model has been greatly influenced
by Seymour Papert ’s httle people model of computation, a seminar given by Alan Kay at M IT. on an
early version of SMALLTALK , and the work of Church. Fischer, Landin, McCarthy. Milner , Morris,
Plotkin. Reynolds, Scott , Stoy, Strachey, Tennent, Wadsworth , etc. on formalisms based on the lambda
cakulus The treatment of the behavior of sequences in this paper is an adaption of the stream
concept of Landin and the generators of the IPL languages of Newell, Stiaw , and Simon.

PLASMA has been designed to provide the basis for the implementation of a Programming

-

Contro l St~’uoture P.g• 41

Apprentice for expert programmers. The beh~tvioral programming methodology which PLASMA isintended to facilitate owes a tremendous intellectual debt to the concepts in SIMULA (Birtwistle et at.
1973, Palme 19731 We are indebted to Alan Kay for callin g our attention to these virtues of SIMULA.

The current Implementat ion of PLASMA was designed by Carl Hewitt and has been
tinpieniented t’i LISP over the last yea r by a team of people whose principal members were Russ
Atkinson, Tom Downey. Carl Hewitt , Marilyn Mclennan , and Howie Shrobe. The imp lementation has
been ac complished using a set of LISP macros implemented by Russ Atkinson that make LISP into a
very limited subset of PLASMA. Howie Shrobe put the system together in the fall semester of 1975.
This wring Marilyn McLennan has brought the system to a usable state . Tom Downey and Jerry
Morr ison have implemented a modular format printer for PLASMA programs. Carl Hewitt and Russ
Atkinson have designed modular primitives for the ~mplernentation of parallelism and synchronization
in PLASMA.

t

.%. ~~~~~~~~~~~ -

,_. — . •

P.g. 42 Control Structure

SECTION IX --- BIBLIOGRAPHY

Atkinson, R. and Hewitt, C. “Synchronization in Actor Systems” Forthcoming. 1976.

Barton, R. S. ideas for Computer Systems Organization: A Personal Survey” Software Engineering I.
Academ ic Press , 1970.

Bishop, P. “Garbage Collection in a Very Large Addres s Space” MIT Al Working Paper ill .
September 19’75.

Birtw pst le , DahI , Myhrhaug , and Nygaard. SIMULA Begin Auerbach. 1973.

Bobrow , D. and B. Wegbreit. A Model for Control Structures for Artificial Intelligence Programming
Languages ” IJCAI-73, Stanford: Stanford University, August , 1973.

Burge, W. H. “Stream Processing Functions” IBM Journal of Research and Development. Vol. 19. No.
1. January, 1975. pp. 12-25.

Cadlou , J. M. “Recursive Definitions of Partial Functions and their Computations” Ph.D. Thesis,
AIM-163, Stanford: Stanford UniversIt y, April, 1972.

Church, A. “The Cakuli of Lambda Conversion” Annals of Mathematical Studies 6, Princeton
University Press, 1941, 2nd edition 1951.

Davies , D. J. M. POPLER ES Reference Manual” TPIJ Report No. I. Theoretical Psychology Unit,
School of Artificial Intelligence, University of Edinburgh. May, 1973.

Dijkstra, E. W. “Notes on Structured Programming” August, 1969.

Erman, L. D. and Lesser, V. A Multi-level Organization for Problem Solving using Many, Diverse,
Cooperating Sources of Knowledge. Proceedings of IJCAI-75. September, 1975.

Evans, A. PAL - A Language for Teaching Programming Linguistics”, Proceedings of 23rd National
Conference, 1968.

Fischer, M. J. “ Lambda Cakulus Schemata ” ACM Conference on Proving Assertions about Programs”
SIGPLAN Notices. Januar y 1972.

Fisher, D. A. “Control Structures for Programming Languages” Ph. d. Carnegie-Mellon University.
1970.

Friedman and Wise “Cons Should Not Evaluate its Arguments” Indiana Technical Report 44.
November, 1975.

,. ...~~~~~~- -—...-~~~~~~~~...

Control Structure p~g~ 43

Greif , I. “Semantics of Communicating Parallel Processes” Ph. D. M. I. T. September, $975. Project
MAC Technical Report TR-l54.

Greif , I. and C. Hewitt “Actor Semantics of PLANNER-73” Proceedings of ACM SIGPLAN-SIGACT
Conference, Palo Alto, January, 1975.

Henderson, P. and Morris, J. H. “A Lazy Evaluator” SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Atlanta. January, 1976.

Herrioc, R. G. “ A uniform view of control structure in programming languages” Information
Processing ~~~, Vol. 2, pp 175-444, August, 1974

Hewitt, C. “PLANNER: A Language for Manipulating Models and Proving Theorems in a Robot”
IJCAI-69, Washington. D.C., May, 1969.

Hewitt,, C. “Procedural Embedding of Knowledge in PLANNER” IJCAI-71, London, September. 1971.

Hewitt. C. “Protection and Synchronization in Actor Systems” Working Paper-89, Artificial
Intelligence Laboratory, Cambridge: MIT., November, 1974. Revised December, 1975.

Hewitt, C., Bishop P.. and R. Steiger, “A Universal Modular Actor Formalism for Artificial Intelligence”
IJCAI-79, Stanford: Stanford University, August, 1973. pp. 235-245.

Hewitt, Carl and Smith, Brian. “Towards a Programming Apprentice” IEEE Tansactions on Software
Engi neering. SE-I, I, March 1975.

Hoare. C. A. R. “Monitors: An Operating System Structuring Concept” Stanford: Stanford University,
$973.

Kahn, K. M. “An Actor-Based Computer Animation Language” MIT A.!. Working Paper 120.
February, 1976.

Kay, Alan C. FLEX, A Flexible Extendible Language” Computer Science Dept. Technical Report 4-7.
Universit y of Utah. June, 1968.

Kay. Alan C. “Reactive Engine” Unpublished Ph. D. Thesis, Computer Science Department, University
of Utah , 1970.

Knight. T. “CONS” M.I.T. A.). Working paper 80. November, 1974 .

Land in, P. J. “ A Correspondence Between ALGOL 60 and Church’ s Lambda-Notation” CACM.
February, 1965.

p

- - - -

~~

- -

~N. 44 Control Struotur.

Learning Research Group “Personal Dynamic Media ” Technica l report. Xerox Palo Aho Research
Center. $976.

Lenat , D. B. “ BEINGS: Knowledge ~s Interacting Experts” IJCAI-75. September. 1975.

McCarthy, J. P. W. Abrahams , D. J. Edwards , T. P. Hart , and M. I. Levin, “Lisp 1.5 Programmer’s
Manual” , M. I. T. Press , Cambr idge, August , 1962.

McDermott D. V., and G. J. Sussma n “The Conniver Ref erence Manual ” A.I. Memo No. 259,
Cambrid ge M.I.T., May, 1972.

McLennan , Marilyn. “Understand ing Simple Plant Pictures ” in Progress in Perception. D.A.I.
Research Report No. 13. University of Edinburgh. December, l975~

Milner, Robin. “Processes: A Mathematical Model of Computing Agents” Proceedings of Logic
Colloquium. Bristol, 1974.

Newell, A. “Some Problems of Basic Organization in Problem-Solving Programs ” Rand Corporation
Memorandum RM-3283-PR. December, 1962.

Palme, J. “Protected Program Modules in SIMULA-67” Technical Report P3-224 776. Research
Institute of National Defense. Stockholm. July 1973.

Reynold s, J. C. “GEDANKEN a Simple Typeless Language Based on the Principle of Completeness
and the Reference Concept” CACM, 1970.

Reynolds, J. C. “Definitional Interpreters for Higher-Ord er Programming Languages ” ACM Nationa l
Convention, 1972.

Rich C. and Shrobe H. “Understanding LISP Programs: Toward s a Programmer’s Apprentice”
Workin g Paper 82. December 1974.

Rullfson Johns F., J. A. Derksen and R. J. Waldinger “Q~A4 A Procedural Calculus for Intuitive
Reasoning” Ph.d. Stanford: Stanford University, November 1972.

Steiger, R. “Actor Machine Architecture” M.S., Cambridge M.I.T.. June. 1974.

Sussman, C. J. and Steele, G. L. “SCHEME: An Interpreter for Extended Lambda Calculus” MIT Al
Memo 349. December, 1975.

Yon ezawa, A. “Symbolic Evaluation of Programs as an Aid to Program Construction” MIT Al Lab
working paper. 197S.

Contro l Struct ure Piga 49

I Vuillemin, J. “Correct and Optimal Implementations of Recursion in a Simple ProgrammingLanguage. Journal of Computer and System Sciences. vol 9. no 3. December 1971.

Wadsworth, Christopher. “Semantics and Pragmatics of the Lambda-cakulus” Ph. D. Oxford. 1971.

WIrth, N. “Program Development by Stepwise Refinement” CACM 14, pp. 221-227. 1971.

I..
Ir~

~~~~~~~~~~~~~ — —~~ 
—.- - - ——- -.-——-..-— .-- . 

—,.



Pig. 4$ Control Structure

SECTION X --- APPENDIX: Introduction to PLASMA

X.l — Sequences and Collections

We will begin by presenting some very simple PLASMA scri pts and gradually work our way up
to more complicated exam ples .

Mali -syntactic variables will be underlined.

We note init ially that (A 1 ~~~ 
... ~ 4)1wans an ordered sequence of the actors ~~through

~~whereas (
~.i &2 ... ~~1)means a unordered collection of the actors ~1through !N.Thus (3 ‘bJis not

equivalent to (‘b 3)akhough (3 ‘bu s equivalent to (‘b 3).Also collections behav e differently f rom
mathematical sets ~n that { ‘b 3)is not equivalent to (3 ‘b)but ~ equivalent to (3 3 ‘b)

Thus PLASMA has syntactic delimiters which are used consistently for the following different
purposes:

(...J delimits an ordered sequence of elements
(...) delimits an unordered collect ion of elements
(...) del imits an eapresslois in PLASMA

X.2 — Transmitters

A simple syntax for sending an actor M(called the message) to an actor T(called the targ et) is:

(1 (* U)

or the following, which is entirely equivalent3

(U =) T) 
-

Thus,

((‘this ‘is ‘.‘simpl. ‘s.nt.nc.] a) parser)

will send a sequence of the five symbols ‘this, ‘is, ‘a, ‘simpl., and ‘s.nt.nc. to the actor denoted by
pars r.

3: The reason for havin g two different syntactic forms for the transmission of a message is that often
it Is more readable to have the expression for the message before the expression for the target or vice
versa. The difference is particularly noticeable when one is much smaller than the other.



Control Structure P.g. 47

Since it is very common to want to send a sequence of arguments to an actor , a simple syntactic
form is needed for this purpose. For example the notation used above would require us to write
(,<a (x y z])in order to compute the sum of x, y, and a. whereas we would prefer use the syntax
(, 1  y a).

In PLASMA , as in LISP, an ex pression of the form (E1 ~ ... ~~kwdinarily denotes an ordinary
procedure call with procedure 

~ 
and arguments ~ and ç,. Since PLASMA also uses parentheses as

the delimiters of special syntactic forms, it needs to have some mechanism to distinguish special syntactic
forms such as (I sz= (3 4J)frorn ordinary procedure calls so that <a is not taken to be the second
argument of f. PLASMA uses RESERVED SYMBOLS in parenthesized expressions for this purpose.
For example both = and (zare reserved symbols. Transmitters using the reserved symbols =‘and <zare
read as forms of the verb “SEND”. For example (1 <a (1 3])would be read as “t is sent the sequence I
3” , or “a sequence of 1 and 3 is sent to f.

For examp le

(factorial 3) is equivalent to Cf actorisl = (3])
(g.n.rat.) is equivalent to (1] ~> g.vwr.t.)

Note that when either of the transmitter arrows <aor a)is written
out explicitly in a special syntactic form, there is always one
expression before the arrow and one after it.

kiso note that arithmetic can be expressed in infix notation as
well as prefix notation. Arithmetic expressions are implemented
in PLASMA by making arithmetic symbols such as • and *
reserved symbols so that special modules associated with these
symbols can process the expression in which they occur when the
script is reduced.

The syntactic forms

(t.rg.t <a m.ss.i.) and (m.ssag. => tar~it)

are designed to direct the eye of the reader along the normal flow of control of the message to the
target. The transmitters of PLASMA are a generalization of the functional applications in the lambda
calculus of Church wh ich were defined in terms of substitution semantics. The semantics of
transmitters are behaviorally defined in terms of events in the actor message-passing model.

I



Pig. 4$ Control Structure

X.S — Pattern Matching

Pattern matching is used in PLASMA to recognize actors which satisf y a simp le descr iption and
to bind the answers to sim ple requests. The process is meant to be quite intuitive. For exam ple The
prefix a in front of an identifier name in a pattern can be used to bind the identifier to the
corresponding object being matched . For example typing

(match (ax =y] to (3 4])

can be used to blndxto 3 and y to 4

X.4 — Receivers

Corresponding to the syntax for sending messages is a syntax for their reception. A PLASMA
message-receiver has the following syntax:

(a> patt. rn

where the reserved symbol a is  read as “RECEIVE”. Note the use of the th!ff horizontal bars for the
shaft a receive arrow as opposed to the use of two horizontal bars for a transmitter arrow . If an actor
with the above definition is sent a message which matches p.tt.rnthen ~~~will be evaluated in the
environment resulting from the pattern match. For example the PLASMA expression

((5 7] a> ;sesd the Ia pie whose first element is S and second element 7
(rn (ax zyj ~g. a receiver whkl. na mes sh. first element .! the sequence received a rind the second y

Cx 4 y))) sand replirs with the sum of a ssd v
evaluates to 12.

For the sake of exposition we will call the actor that Ca> p.tt.rn ~)creates a receiver. The
behavior of the receiver is roughly as follows: when the receiver is sent a message, it matches it against
the pattern. A PATTERN is an actor which decides whether it will match another actor called an
object — the process is asymmetric. If the match is unsuccessful, then the receiver complains that the
message is not acceptable. If the match is successful, the pattern creates a new environment (which
contains the bindin gs that resulted f rom the matching process). The receiver then sends the an
evil message that contains the new environment.

The syntactic form for receivers

C’> p~~ qrn 
~~~ 


Contro l Structure Pag. 49

is designed to direct the eye of the reader along the normal flow of control with the message through
the pattern into the body. The receivers of PLASMA are a generalization of the lambda expressions
which were defined by Church in terms of substitution semantics. The semantics of receivers are
behaviorally defined in terms of events in the actor message-passing model.

All messages in PLASMA are received through patterns which should be kept quite simple.
Writing complicated patterns results in tortuous obscure code. Simple patterns are a good way to
bind identifiers to values. Pattern matching in PLASMA is a generalization of the lambda calculus
identif let binding mechanism. The semantics of receivers is behaviorally defined by axioms in terms
of the actor message-passing model.

The evaluation of a receiver results in an actor which has as Its script the receiver and as its
acquaintances the actors bound to the free identifiers of the receiver. For examp le if we type

(a a ((3 • 2) (3 - 2)])

ther we will create an actor [5 1]which is called a in the current local environment in which we are
working. If we then type

Cf 1 . ; define f to be an actor whkl,
(a (ax) ;when it receives a sequence with one element which will be trilled a

(g a a))) replies with g of a and .

an actor will be created which has [5 ijand the value of g as its acquaintances.

X.5 --- Conditionals

Conditionals in PLASMA take two standard forms which are closely related. One form
conditionally tests the value of an expression, the other conditionally tests the incoming message. The
first is known as the rules expression and has the fo~m:

(rules an-.xpr .ssion ;the ru les for the actor .n-.xpr.ssion are
(a) patt. rn~ if it matches p .tt.rn1 then

~re ply with the value of
~Q~zi(a) p.tt. rn~ ;else If it matches patt •rn2 then

body~) ;r eply with the value of bo~y2

(a) p.tt.rn~ ;else is must match P1tt1tfl ~ 50

;repty with the value of ~~~~~

The expression is matched against the successive patterns until it matches one of them; then the
corresponding body is evaluated in the environment resulting from the pattern match. For example,

I

S

Pig. 50 Control Structure

(rul.. (3 • 4)
(a> (even) ;ih. pat tern (even) will match any even ins. ger

5)
(a) an ;she pattern an will match any actor and hind n so shot actor

(2 * n))) ;resarn t wice she value oI n

evaluates to 14.

PLASMA uses a similar construct (called a cssss statement) to conditionally dispatch on an
incoming message.

(ci... ;she cases for a message sent to this actor are
(a> pMt .rn 1 ;lf the message matches p.tt.rn1 then

;reply with the value of
~~~Z~i(a) patt .r~~ ;eIse if th. message matches patt.~~ t hen

body~) ;reply wish the value of body,~
(a) patt .rn~ else she message must match pitt.rn~ so

~reply with she value of ~~~~~

A message sent to an expression of the above form is matched directly against the successive patterns
until a match is found, whereupon the corresponding body is evaluated in the environment which
results from the match.

For example the following actor replies with yss to any even number it is sent; replies with no to
any odd number; and is otherwise not-applicable.

Cc....
(a) (even)

y.s)
(a) (odd)

no))

X.6 --- Definitions

In general, typing an expression of the form

(n.m. ~ d.finition)

will cause PLASMA to do its subsequent evaluations In an environment which has been extended by
binding n.m. to the value of dsfinltion.

H ~~~ . 
_ _ _ _ _ _



Control Structure P.1. 51

For examp le the normal way to interactivel y define int.pr-.xpon.nti.tionwhtle working at a
console would be to type:

(intsg .r-.xpon.nti.t ion a ;ints isr -sxpo n.nti .tion Is defined to have the following behavior
(a> (=bass =.xpon.nIJ ;whenever It receives a sequence of two arguments called bes s and .apon.nt

(rul•s .xpon.nt ;the rules for she exponent are
(a ) O  ;if is i s O  then

1) ;reply t hat the answer Is I
(a> (> 0) ;else If is Is greater than 0 then

(bus * (int.g.r-.xpon.nti.tion b.c. (sxpon.nt — 1)))))))
;she answer is the base times the base to the power of the exponent minus I

As an obvious extension to our notation for definitions we allow a parenthesized expression on
the left hand side of a definition. For example we can define integer ex ponentiation in terms of an
inf ix operator as follows:

((abis. so-integer-power =.xpon.nt) a ;an expression of the form (=bu. to-integer-power =.xpon.nt)
Is defined by the following behavior

(rules .xpon.nI ;she rules for the e~ ponens are
(1> 0 ;If Is Is 0 then

1) ;she answer Is I
(a> (>0) ;else if it is greater than 0 then

(bass * (bas. so-integer-power (.xpon.nt - 1))))))

;she answer is the base times the base to the integer power of the exponent minus I

Using the above definition (5 to-integer- power 3)evaluates to 125. In this way we can conveniently
define new kinds of syntactic forms.

MUTUALLY REFERENTIAL DEFINITIONS are easy to make using the reserved symbol I.. as
follows:

(let
(
~~~~1 ‘~~i~(n.m.2 a

__ a

t hen

which evaluates ~~~ in an environment with each
~~~~~~~~~ 

bound to the value of ~~~~. The equations are
mutual ly referential in that any occurrence of a ~~~~~~~~~ within a ~ refers to

As a special case of the let construct we use

(nams a dsfinltion)



Pigs 52 Control Struotur .

as an abbreviation for

(let
(n.m. a d&i n,tion)
then

n.m.)

Self-referential definitions are very useful in defining iterative, recursive, and co-routine control
structures. They are also useful in defining data structures that need to know about themselves.

At this point, we have enumerated all the ways to bind identifiers in PLASMA.. Note that the
definition of every symbol is lexically scoped and that there are no “global variables”.

x.7 -- Unpack

We will often make use of an extremely useful operator for sequences and collections called
UNPACK which is abbreviated as an exclamation point: !aprsssionis always equivalent to writing out
all of the elements of the expression indiv Iduall y. Thus if sis bound to the sequence (3 4 5], then the
value of (1 2 !s] is [1 2 3 4 5). Thus if the sequence [10 20 30 40 SOjis matched against the pattern
(=x zy ~=4 then awill be bound to 10, ywill be bound to 20, and awill be bound to [30 40 50] in the
environment which results from the match. Unpack is in essence the inverse of sequence brackets “r...r.

The unpack operator neatly cleans up the confusion in LISP between different ways to construct
lists. Considering analogies between LISP lists and PLASMA sequences, the following similarities hold:

(a y z] is analogous to (list v y a)
(a lv] is analogous to (cons a y)
[ix yJ Is analogous to (.pp.nd a (list y))
(lx lv] is analogous to (.pp.nd a y)

The chief benefit of the unpack notation is that the programmer no longer needs to concentrate
on how to construct the structure by deciding whether to use CONS, LIST, or APPEND. Instead she can
concentrate on what the structure should be by writting a pattern of what it should look like. For
example the following PLASMA expression

El. (b Ic d] I.]

has the followin g LISP analog:

-



Control Structure Pag• 53

(I—
I

(con.
(con.

b
(.pp.nd C (list d)))

5))

X.8 --- Use of Sequences

Sequences are a useful mechanism for the implementation of the kind of dia logues needed in the
implementation of knowledge-based systems. They provide a useful common interface f or co-routine
control structures. We shall bind the elements and sub-sequences using pattern matchin g. The
following pattern will bind f to the first element of a sequence and r to the rest:

(af larJ

For example if s is bound to the sequence (14 3 lOSJthen typing the followlrg expression in PLASMA

(match (xl Is,’] to 5)

will bind I to 14 and bind r to (3 105].

As an exam ple of the use of sequences, we define the f unction sum-of which cakulates the sum of
all the elements in a sequence

• (sum-of a ;define she fu nction sum of
(a> (ath.-s.qu.nc.] ~to receive a sequence

(rules ttw-s.qu.nc. .;she rules for th. sequence are
(a> (] If the sequence is empty

0) ;shen the sum is 0
(a> [ Th.-n.xt Islh.-r.st] ;else bind the next and she rest

(th.—n.xt + (sum-of th.-r.st)))))) ;shen return she next plus the sum of the rest

For examp le (sum -of [1 4 9])eva luates to 14.

It is easy to build sequences. For example the following definition defines finite sequences of
consecutive dec reasin g squares.

I

N..



Pig. 54 Control Structure

(ssqu.nc.-of-squ.r.s a

(rul.s n ;she rules for a are
(a> 0 

~If Is Is O then
U) ;she answer Is she em p ly sequence

(a) (> 0 )  ;th. If It is greaser than 0 she..
((a * a) !(ssqumics-of-squ.r.s (a - 1))]))))

;the answer is a sequence i.lsP, a2 followed she squares for a minus 1

For example typing the following expression into PLASMA

(match (afirsi larsstj so (a qusnc.-of-.qu.ree 4))

results in binding firsi to the value 16 and binding rsst to the value (9 4 1J. Thus
(sum-of (s quanc•-ol-Iqu.rss 4))evaluates to 30.

X.9 -- Delay

For man y app lications , it is more efficient to generate the squares in the sequence of squares
Incrementally adopting a “wait and see” approach as to whether the rest of the elements will be needed.
To this end we introdu ce the delay operator which delays computation of the value of expression ~until the value is needed. Suppose that vs is the value of the expression (delay E). The value of ( is
not computed until the actor v• Is sent a message. The first time v• is sent a message. the va lue of ~ iscomputed and remembered. Thereaf ter vs behaves exactly like the value of ~ It is unreasonable to
delay the evaluation of any expression which does not always evlaluate to the same object.

The delay operator can be used to refine the implementation of s.qusncs-of-squ.rss to produce
an incremental-version:

(incr.m.nt.i-s.qu.nc.-of-,que’., a
(a> (an]

(n#.s ii

(a) 0
(1)

• (a > ( > 0 )
~~~ l~iel.y tincrsmantai-s.quwn.-of-squ.r., ~n - 1W]))))

• Typing the followin g into PLASMA

(m.ich (all lan] so (incnssnsntd-ssqusac.-of-sqtwn.s 10))

will bind 11 to 100 and bind ii to an actor which is behavIorally equivalent to

Control Structure P.g. 55

(delay (incrsm.nl.I-ssqusncs-of-squ.r.s 9))

At this point In time the only square that has been computed is the square of 10. Typing

(match (sf2 !xr 2] to ni)

will bind f2 to 81 and bind r2 to an actor which is behaviorally equivalent to

(delay (incrsnwnt.I-ssqu.ncs-of-squ.rss 8))

X.io --- Packa gers

PACKAGERS are a primitive mechanism in PLASMA for packaging actors together. They are
very useful for packagi ng up the parts of a message. For example the notation (a1 ... x~] for a sequence
is really just syntactic sugar for the package (sequence: a 1 ... x e). Thus evaluation of an ordinar y
function call of the form (I <a (a1 ... a~])sends a package which is the sequence of arguments to f .
However , the use of positional notation within a sequence for the com ponents of a message is neither
mnemonic nor secure. The packagers of PLASMA allow the components of the package to be exp licitl y
named and the physical representation to be hidden (for reasons of efficiency and cleanliness). They
permi t all of the com ponents of the package which are of Interest to be selected in parallel and the
remainder of the com ponents to be ignored (for reasons of modularity and extensibility). Additionally.
packagers provide for both the pri vacy and security of messa ges since in order to have access to the
contents of a package constructed by a particular packager , it is r ecessary to have access to that
packager. Packagers are the primitive authentication mechanism of PLASMA. A packager can only be
taken apart by the packager which constructed it.

Tç illustrate the use of packagers we shall define a packager for complex numbers. First we
def ine packagers for the messages to which complex numbers must respond:

(packager (real-pars ?))
(packager (imag inary-p ars?))

To make these abbreviations more convenient to use we define the followi ng abbreviations:

((r ..l-p.rt a2) I ;she rs.I-p.rt of a Is rem pused by
((real-pan?) a) a)) ;sending a message asking a for its reel part

((im.ginrsy-p.rt a~) i ;she im.ginsry-p.rt of a is coin puted by
(Ursa ginary-pars?) a) a)) ;seisd a message asking a for is. Ima ginary pars

Below we define a packager for complex numbers:

1w

Pig. 5$ Control Structure

(packager (complex: (real: ?) (imaglnary 1))
;deflne a packager for complex numbers with real and Imaginary components

(a> (complex: (real: ~~
) (imaginary ay))

(ci...
(a) (real-pars?) ;if asked for she real part then

a) ;retursi I
(a) (imaginary-pars?) If asked for she Imaginary pars then

y) resurn y
(a) (plus: al) 1f asked for the sum wish z then

(complex: ;resurn a complex nu mber wish
(real: (a + (rail-pint a))) red component she sum of a and she real part .1 a
(Imag inary (y + (im.gin.ry-pant a)))))

;and imaginary component the sum of y and the Imaginary par, of a
(a> (times: sa)

(complex:
(real: ((a * (r..l—p.rt a)) - (y * (Im.gin.ry-p.rt a))))
(imaginary ((a * (imaginary—pint a)) + (y * (r.al-p.rt a)))))))))

Notice the use of the packager complex: both to construct complex numbers and to take them
apart into their real and imaginary parts. The above imp lementation is ineffic ient because of all the
message passing involved in computing the values of (n il-part a)and (imaginary-part a)when doing
addition and multiplication of complex numbers. For example in the above implementation two such
messages are required to compute the sum in the fol low ing sub-expression of the above program:

(complex:
(re al: (a + (r.il—p.rt a)))
(imaginary (y + (imaginary-part a))))

We will demonstrate how the efficiency can be improved in a purely mechanical wa y without
diminishin g the generality of the implementation . The first step is to collect statistics of executions to
determine which actors are ver y frequen tly sending messages to other. This will soon reveal that the
expression (n.aI-part z)quite often results in sending the message (real-pan ?)to a where a Is of the form

(complex: (real: nz) (imaginary ii))

This suggests that special code for this case might be generated in-l ine to speed up the execution.
Obviously the expression (r.al-part a)is completely equivalent to

(rul.s z
(a> (complex: (real: arz) (imaginary: ala))

(rail-pant (comp lex: (reel: “a) (imaginary: ii))))
(else

(r.al—pant a)))

Control Stru otur. Paga 57
By replacing r.il-p. rt and complex: by their definitions and sim plifying we obtain the foll ow ing

t expression:

(rui.. a
(a> (cam plea: (real: nra) (imaginary: ala))

na)
(else

(rail—part a)))

By perform ing the above transfo rmation on all expressions of the form (rail-part z)and(Imaginary-part a)and then pulling out common sub-expressions the following more efficientimplementation of the packager complex: his been deriv ed:

(packager (complex: (real: ?) (imaginary : fl)
;define a more efficient packager for cam plea numbers wish real end Imaginary componenss

(a> (complex: (real: ax) (Ima ginary: .y))
(cm.

(a> (real-pan?)
a)

(a) Ursa ginary-pars?)
y)

(a) (p IKE ‘a)
(nd.. z

(a) (complex: (real: nra) (imaginary: ala))
(cam plea:

(real: (a + ii))
(imaginary: (y + iifl))

(else
(complex:

(real: (a + (rail-pant a)))
(Ima ginary : (~p + (imaginary-part a)))))))

(a) (aim. az)
(rid., a

(a> (complex: (real: nra) (Imaginary: ala))
(cam plea:

(reel: (i* ra) - (y * ix)))
(Imaginary: ((x *iz)+(y *rz))))

(else
(comp lex:

(real: ((a * (rail-part a)) - (y * (imigkwry-part a))))
(imaginary: ((a * (lm.girmry-part a)) + (y * (rail-part a))))))))))))

Note that PLASMA is ideall y suited for the above kind of optimization by in-line substitution
because identifiers In PLASMA (unlike many other languages) are completely transparent. An
occurience of Identifier In PLASMA serves only to name the actor to which it is bound. In-line
substitution is not always valid in languages like LISP 15 because of the SET primitive in the language.
The presence of a prim itive like SET (and ot her simila r primitives in othe r LISP-lik e languages) makesoptimization much more difficult.

